Query & search registries

Find & access data using registries.

Setup

!lamin init --storage ./mydata
Hide code cell output
💡 connected lamindb: testuser1/mydata
import lamindb as ln

ln.settings.verbosity = "info"
💡 connected lamindb: testuser1/mydata

We’ll need some toy data:

ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()
Hide code cell output
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'fFM6DufrM8iEwnlfdQ16' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/fFM6DufrM8iEwnlfdQ16.jpg'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'X1Oilr0aXunbPb07S50v' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/X1Oilr0aXunbPb07S50v.parquet'
❗ no run & transform get linked, consider calling ln.track()
✅ storing artifact 'nzhAAXAAC7qg23ebl5yF' at '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/nzhAAXAAC7qg23ebl5yF.fastq.gz'
Artifact(uid='nzhAAXAAC7qg23ebl5yF', description='My fastq', suffix='.fastq.gz', size=20, hash='hi7ZmAzz8sfMd3vIQr-57Q', hash_type='md5', visibility=1, key_is_virtual=True, created_by_id=1, storage_id=1, updated_at='2024-06-05 10:45:07 UTC')

Look up metadata

For entities where we don’t store more than 100k records, a look up object can be a convenient way of selecting a record.

Consider the User registry:

users = ln.User.lookup(field="handle")

With auto-complete, we find a user:

user = users.testuser1
user
User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at='2024-06-05 10:45:05 UTC')

Note

You can also auto-complete in a dictionary:

users_dict = ln.User.lookup().dict()

Filter by metadata

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 fFM6DufrM8iEwnlfdQ16 None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.217180+00:00
2 X1Oilr0aXunbPb07S50v None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.310958+00:00
3 nzhAAXAAC7qg23ebl5yF None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.319054+00:00

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record stored as a row.

  • .all(): An indexable django QuerySet.

  • .list(): A list of records.

  • .one(): Exactly one record. Will raise an error if there is none.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for metadata

ln.Artifact.search("iris").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2 X1Oilr0aXunbPb07S50v None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.310958+00:00

Let us create 500 notebook objects with fake titles and save them:

ln.save(
    [
        ln.Transform(name=title, type="notebook")
        for title in ln.core.datasets.fake_bio_notebook_titles(n=500)
    ]
)

We can now search for any combination of terms:

ln.Transform.search("intestine").df().head()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
11 jyXN9okUqe8rGu6G None Igy Oxyphil cell IgG1 intestine IgA IgG4 Mesan... None None notebook None None None None 1 2024-06-05 10:45:12.222249+00:00
29 xaoMypVyaXQMhVDP None Igg intestine study Oxyphil cell IgE Basket ce... None None notebook None None None None 1 2024-06-05 10:45:12.225022+00:00
41 WQ2Q52AklXJTJ2Dg None Blue-Sensitive Cone Cells IgG Scrotum intestine. None None notebook None None None None 1 2024-06-05 10:45:12.226895+00:00
42 eprfnk8Fkqu1ndcC None Efficiency blue-sensitive cone cells study cla... None None notebook None None None None 1 2024-06-05 10:45:12.227048+00:00
46 HqoptnuzVqG8hvym None Iga candidate investigate IgA intestine research. None None notebook None None None None 1 2024-06-05 10:45:12.227658+00:00

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations:

ln.Artifact.filter(run__created_by__handle__startswith="testuse").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id

The filter selects all artifacts based on the users who ran the generating notebook.

(Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.)

Beyond __startswith, Django supports about two dozen field comparators field__comparator=value.

Here are some of them.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 fFM6DufrM8iEwnlfdQ16 None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.217180+00:00

less than/ greater than

Or subset to artifacts greater than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
2 X1Oilr0aXunbPb07S50v None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.310958+00:00
3 nzhAAXAAC7qg23ebl5yF None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.319054+00:00

or

from django.db.models import Q

ln.Artifact.filter().filter(Q(suffix=".jpg") | Q(suffix=".fastq.gz")).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 fFM6DufrM8iEwnlfdQ16 None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.217180+00:00
3 nzhAAXAAC7qg23ebl5yF None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.319054+00:00

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
1 fFM6DufrM8iEwnlfdQ16 None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.217180+00:00
3 nzhAAXAAC7qg23ebl5yF None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.319054+00:00

order by

ln.Artifact.filter().order_by("-updated_at").df()
uid version description key suffix accessor size hash hash_type n_objects n_observations visibility key_is_virtual storage_id transform_id run_id created_by_id updated_at
id
3 nzhAAXAAC7qg23ebl5yF None My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.319054+00:00
2 X1Oilr0aXunbPb07S50v None The iris collection None .parquet DataFrame 5629 ah24lV9Ncc8nPL0MumEsdw md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.310958+00:00
1 fFM6DufrM8iEwnlfdQ16 None My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g md5 None None 1 True 1 None None 1 2024-06-05 10:45:07.217180+00:00

contains

ln.Transform.filter(name__contains="search").df().head(10)
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
5 mrNEfBq7VLNSeBjY None Submandibular Glands IgD research Scrotum visu... None None notebook None None None None 1 2024-06-05 10:45:12.221329+00:00
17 7ClIJZpuvBYdBW8c None Iga Submandibular glands research IgA Basket c... None None notebook None None None None 1 2024-06-05 10:45:12.223168+00:00
20 3iT4GHOp2nQIConu None Cluster Submandibular glands research Oxyphil ... None None notebook None None None None 1 2024-06-05 10:45:12.223630+00:00
22 u7JLQqQWKkq64cyW None Research IgG3 Von Ebner's gland Cajal–Retzius ... None None notebook None None None None 1 2024-06-05 10:45:12.223935+00:00
25 Xcmb60fQ6nV8ySQl None Igg2 Cervix research IgA Oxyphil cell cluster ... None None notebook None None None None 1 2024-06-05 10:45:12.224398+00:00
37 BwGbSlLCjmrqmCjy None Cervix rank IgG IgE IgY IgG1 IgG3 research. None None notebook None None None None 1 2024-06-05 10:45:12.226279+00:00
46 HqoptnuzVqG8hvym None Iga candidate investigate IgA intestine research. None None notebook None None None None 1 2024-06-05 10:45:12.227658+00:00
52 4K7BKRsDu8TaFnsL None Research IgE intestinal IgG4 IgA. None None notebook None None None None 1 2024-06-05 10:45:12.228571+00:00
57 ZLTNdoS3xpOL6oMy None Ige Duodenum research IgA IgE. None None notebook None None None None 1 2024-06-05 10:45:12.229369+00:00
60 0Q7grO9QwcWd1Suf None Rank Cajal–Retzius cells IgG3 research researc... None None notebook None None None None 1 2024-06-05 10:45:12.229822+00:00

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(10)
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
5 mrNEfBq7VLNSeBjY None Submandibular Glands IgD research Scrotum visu... None None notebook None None None None 1 2024-06-05 10:45:12.221329+00:00
17 7ClIJZpuvBYdBW8c None Iga Submandibular glands research IgA Basket c... None None notebook None None None None 1 2024-06-05 10:45:12.223168+00:00
20 3iT4GHOp2nQIConu None Cluster Submandibular glands research Oxyphil ... None None notebook None None None None 1 2024-06-05 10:45:12.223630+00:00
22 u7JLQqQWKkq64cyW None Research IgG3 Von Ebner's gland Cajal–Retzius ... None None notebook None None None None 1 2024-06-05 10:45:12.223935+00:00
25 Xcmb60fQ6nV8ySQl None Igg2 Cervix research IgA Oxyphil cell cluster ... None None notebook None None None None 1 2024-06-05 10:45:12.224398+00:00
37 BwGbSlLCjmrqmCjy None Cervix rank IgG IgE IgY IgG1 IgG3 research. None None notebook None None None None 1 2024-06-05 10:45:12.226279+00:00
46 HqoptnuzVqG8hvym None Iga candidate investigate IgA intestine research. None None notebook None None None None 1 2024-06-05 10:45:12.227658+00:00
52 4K7BKRsDu8TaFnsL None Research IgE intestinal IgG4 IgA. None None notebook None None None None 1 2024-06-05 10:45:12.228571+00:00
57 ZLTNdoS3xpOL6oMy None Ige Duodenum research IgA IgE. None None notebook None None None None 1 2024-06-05 10:45:12.229369+00:00
60 0Q7grO9QwcWd1Suf None Rank Cajal–Retzius cells IgG3 research researc... None None notebook None None None None 1 2024-06-05 10:45:12.229822+00:00

startswith

ln.Transform.filter(name__startswith="Research").df()
uid version name key description type reference reference_type latest_report_id source_code_id created_by_id updated_at
id
22 u7JLQqQWKkq64cyW None Research IgG3 Von Ebner's gland Cajal–Retzius ... None None notebook None None None None 1 2024-06-05 10:45:12.223935+00:00
52 4K7BKRsDu8TaFnsL None Research IgE intestinal IgG4 IgA. None None notebook None None None None 1 2024-06-05 10:45:12.228571+00:00
238 SOtR9Ha8FLmM1jQI None Research IgA IgG3 cluster Duodenum Basket cell... None None notebook None None None None 1 2024-06-05 10:45:12.265100+00:00
242 LSTJUIKegaMUFSQC None Research intestine IgG3 investigate IgG1. None None notebook None None None None 1 2024-06-05 10:45:12.265693+00:00
272 wXIWPIzAgDqVF5X0 None Research IgE IgA blue-sensitive cone cells Par... None None notebook None None None None 1 2024-06-05 10:45:12.270225+00:00
447 BeLreE5IfjZXrIhh None Research IgA IgA intestinal Lymph node Chromaf... None None notebook None None None None 1 2024-06-05 10:45:12.301056+00:00
455 uCgTsMFrIk5PhIEF None Research IgG1 Submandibular glands IgG1 Von Eb... None None notebook None None None None 1 2024-06-05 10:45:12.302221+00:00
Hide code cell content
# clean up test instance
!lamin delete --force mydata
!rm -r mydata
Traceback (most recent call last):
  File "/opt/hostedtoolcache/Python/3.11.9/x64/bin/lamin", line 8, in <module>
    sys.exit(main())
             ^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 367, in __call__
    return super().__call__(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1157, in __call__
    return self.main(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/rich_click/rich_command.py", line 152, in main
    rv = self.invoke(ctx)
         ^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1688, in invoke
    return _process_result(sub_ctx.command.invoke(sub_ctx))
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 1434, in invoke
    return ctx.invoke(self.callback, **ctx.params)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/click/core.py", line 783, in invoke
    return __callback(*args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamin_cli/__main__.py", line 103, in delete
    return delete(instance, force=force)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/_delete.py", line 98, in delete
    n_objects = check_storage_is_empty(
                ^^^^^^^^^^^^^^^^^^^^^^^
  File "/opt/hostedtoolcache/Python/3.11.9/x64/lib/python3.11/site-packages/lamindb_setup/core/upath.py", line 779, in check_storage_is_empty
    raise InstanceNotEmpty(message)
lamindb_setup.core.upath.InstanceNotEmpty: Storage /home/runner/work/lamindb/lamindb/docs/mydata/.lamindb contains 3 objects ('_is_initialized' ignored) - delete them prior to deleting the instance
['/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/X1Oilr0aXunbPb07S50v.parquet', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/_is_initialized', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/fFM6DufrM8iEwnlfdQ16.jpg', '/home/runner/work/lamindb/lamindb/docs/mydata/.lamindb/nzhAAXAAC7qg23ebl5yF.fastq.gz']